Quantum-Coherent Light-Electron Interaction in a Scanning Electron Microscope

Phys Rev Lett. 2022 Jun 10;128(23):235301. doi: 10.1103/PhysRevLett.128.235301.

Abstract

The last two decades experimentally affirmed the quantum nature of free electron wave packets by the rapid development of transmission electron microscopes into ultrafast, quantum-coherent systems. So far, all experiments were restricted to the bounds of transmission electron microscopes enabling one or two photon-electron interaction sites. We show the quantum coherent coupling between electrons and light in a scanning electron microscope, at unprecedentedly low, subrelativistic energies down to 10.4 keV. These microscopes not only afford the yet-unexplored energies from ∼0.5 to 30 keV providing the optimum electron-light coupling efficiency, but also offer spacious and easily configurable experimental chambers for extended, cascaded optical set ups, potentially boasting thousands of photon-electron interaction sites. Our results make possible experiments in electron wave packet shaping, quantum computing, and spectral imaging with low-energy electrons.