Regioisomerism in Symmetric Dimethyl Dialdehydes Dictates their Photochemical Reactivity

J Org Chem. 2022 Jul 15;87(14):9296-9300. doi: 10.1021/acs.joc.2c01020. Epub 2022 Jun 24.

Abstract

We herein report the first light-driven selective monoderivatization (desymmetrization) of two chemically equivalent carbonyl groups in a single chromophore. By comparing of four symmetric regioisomers, featuring two equivalent ortho-methylbenzaldehyde units, we identify dimethyltherephtalaldehydes (DMTAs) which can be activated in a dual wavelength-selective fashion. Under visible light and UV-light irradiation, DMTAs undergo two consecutive Diels-Alder reactions exhibiting near-quantitative endo-selectivity (>99%) and provide excellent yields (96-98%). The influence of the regioisomerism of the dialdehydes on their photochemical behavior is profound, evidenced by an in-depth investigation of their photochemical performance. We exemplify the capability of the photosystems via the synthesis of complex Diels-Alder adducts with various dienophiles, including alkynes.