Tebuconazole (TEB) is a common triazole fungicide that has been widely applied in the treatment of fungal diseases. It is reported that TEB could exert harmful effects on mammals' health. However, the molecular mechanism involved in TEB toxicity remain undefined. Our study aimed to investigate the mechanisms of TEB-induced toxicity in intestinal cells. We found that TEB stimulates apoptosis through the mitochondrial pathway. Additionally, TEB triggers endoplasmic reticulum (ER) stress as demonstrated by the activation of the three arms of unfolded protein response (UPR). The incubation with the chemical chaperone 4-phenylbutyrate (4-PBA) alleviated ER stress and reduced TEB-induced apoptosis, suggesting that ER stress plays an important role in mediating TEB-induced toxicity. Furthermore, inhibition of ROS by N-acetylcysteine (NAC) inhibited TEB-induced ER stress and apoptosis. Taken together, these findings suggest that TEB exerts its toxic effects in HCT116 cells by inducing apoptosis through ROS-mediated ER stress and mitochondrial apoptotic pathway.
Keywords: Apoptosis; Endoplasmic Reticulum Stress; ROS; Tebuconazole.
Copyright © 2022. Published by Elsevier B.V.