Detection of microbes relies on the expression of germline-encoded pattern recognition receptors (PRRs). While PRRs can directly sense conserved pattern expressed by various microbes, they can also induce effector-triggered immunity (ETI) by sensing pathogenic alterations of cellular homeostasis. One consequence of ETI is the death of the infected cell through the induction of inflammasome-dependent cell death, namely, pyroptosis. Such process can be easily studied in macrophages and epithelial cells, yet neutrophils encode an arsenal of proteolytic enzymes that imped easy and reliable study of ETI-triggered inflammasome response. Here, we describe an immunoblotting methodology to study both ETI- and PRR-driven inflammasome responses in neutrophils upon bacterial infections. This method is also transposable to other microbial pathogen- and toxin-induced inflammasome response in neutrophils.
Keywords: Infections; Inflammasome; Neutrophils; Pyroptosis.
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.