Objective: It remains unclear to what extent Transcranial Magnetic Stimulation-evoked potentials (TEPs) reflect sensory (auditory and somatosensory) potentials as opposed to cortical excitability. The present study aimed to determine; a) the extent to which sensory potentials contaminate TEPs using a spatially-matched sham condition, and b) whether sensory potentials reflect auditory or somatosensory potentials alone, or a combination of the two.
Methods: Twenty healthy participants received active or sham stimulation, with the latter consisting a sham coil click combined with scalp electrical stimulation. Two additional conditions i) electrical stimulation and ii) auditory stimulation alone, were included in a subset of 13 participants.
Results: Signals from active and sham stimulation were correlated in spatial and temporal domains > 55 ms post-stimulation. Relative to auditory or electrical stimulation alone, sham stimulation resulted in a) larger potentials, b) stronger correlations with active stimulation and c) a signal that was not a linear sum of electrical and auditory stimulation alone.
Conclusions: Sensory potentials can confound interpretations of TEPs at timepoints > 55 ms post-stimulation. Furthermore, TEP contamination cannot be explained by auditory or somatosensory potentials alone, but instead reflects a non-linear interaction between both.
Significance: Future studies may benefit from controlling for sensory contamination using spatially-matched sham conditions, and which consist of combined auditory and somatosensory stimulation.
Keywords: Electroencephalography; Sensory-evoked potentials; Sham stimulation; TMS-EEG; Transcranial magnetic stimulation.
Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.