Vitamin E-coated dialyzer alleviates erythrocyte deformability dysfunction in patients with end-stage renal disease undergoing hemodialysis

Exp Ther Med. 2022 Jun 1;24(1):480. doi: 10.3892/etm.2022.11407. eCollection 2022 Jul.

Abstract

Patients with end-stage renal disease (ESRD) are characterized by augmented oxidative stress (OS) due to the imbalance between the generation of increased concentrations of oxidative molecules and decreased antioxidant capacity. Vitamin E-coated dialyzer membranes (VEMs) have previously been reported to alleviate the imbalance of redox metabolism in patients with ESRD undergoing hemodialysis (HD); however, their effect on the deformability of red blood cells (RBCs) remains unknown. In the present study, 48 patients with ESRD undergoing HD were enrolled and randomly assigned into two groups: HD with VEMs (VEM group; n=24) and HD with polysulfone dialyzer membranes (PM group; n=24), and another 24 healthy volunteers served as the control group. The present study investigated the morphological changes and deformability of RBCs in patients with ESRD and healthy volunteers. The concentration of serum vitamin E, the parameters of antioxidant stress and OS, and the degree of oxidative phosphorylation and clustering of anion exchanger 1 (Band 3) in RBCs were measured. The results obtained suggested that VEM treatment markedly ameliorated the abnormalities of RBC morphology and deformability in patients with ESRD undergoing HD. Mechanistic studies showed that VEM treatment led to a marked improvement in the concentration of serum vitamin E, which was positively associated with the restored antioxidant capacity, and decreased oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD. Taken together, the results of the present study have demonstrated that VEM treatment effectively restored the imbalance of redox metabolism, and improved the oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD via delivering vitamin E, which may alleviate the abnormal morphological and mechanical properties of RBCs. These findings are anticipated to be useful with respect to improving the nursing care and cure rate of patients with ESRD.

Keywords: deformability; end-stage renal disease; oxidative stress; red blood cells; vitamin E-coated dialyzer membranes.

Grants and funding

Funding: No funding was received.