Markerless gene editing in Neisseria gonorrhoeae

Microbiology (Reading). 2022 Jun;168(6). doi: 10.1099/mic.0.001201.

Abstract

Neisseria gonorrhoeae, the gonococcus, is a pathogen of major public health concern, but sophisticated approaches to gene manipulation are limited for this species. For example, there are few methods for generating markerless mutations, which allow the generation of precise point mutations and deletions without introducing additional DNA sequence. Markerless mutations are central to studying pathogenesis, the spread of antimicrobial resistance (AMR) and for vaccine development. Here we describe the use of galK as a counter-selectable marker that can be used for markerless mutagenesis in N. gonorrhoeae. galK encodes galactokinase, an enzyme that metabolizes galactose in bacteria that can utilize it as a sole carbon source. GalK can also phosphorylate a galactose analogue, 2-deoxy-galactose (2-DOG), into a toxic, non-metabolisable intermediate, 2-deoxy-galactose-1-phosphate. We utilized this property of GalK to develop a markerless approach for mutagenesis in N. gonorrhoeae. We successfully deleted both chromosomally and plasmid-encoded genes, that are important for gonococcal vaccine development and studies of AMR spread. We designed a positive-negative selection cassette, based on an antibiotic resistance marker and galK, that efficiently rendered N. gonorrhoeae susceptible to growth on 2-DOG. We then adapted the galK-based counter-selection and the use of 2-DOG for markerless mutagenesis, and applied biochemical and phenotypic analyses to confirm the absence of target genes. We show that our markerless mutagenesis method for N. gonorrhoeae has a high success rate, and should be a valuable gene editing tool in the future.

Keywords: Neisseria gonorrhoeae; counter-selection; galK; markerless.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Galactose / metabolism
  • Gene Editing*
  • Mutagenesis
  • Neisseria gonorrhoeae* / genetics
  • Neisseria gonorrhoeae* / metabolism
  • Plasmids / genetics

Substances

  • Galactose