Unsupervised PET logan parametric image estimation using conditional deep image prior

Med Image Anal. 2022 Aug:80:102519. doi: 10.1016/j.media.2022.102519. Epub 2022 Jun 23.

Abstract

Recently, deep learning-based denoising methods have been gradually used for PET images denoising and have shown great achievements. Among these methods, one interesting framework is conditional deep image prior (CDIP) which is an unsupervised method that does not need prior training or a large number of training pairs. In this work, we combined CDIP with Logan parametric image estimation to generate high-quality parametric images. In our method, the kinetic model is the Logan reference tissue model that can avoid arterial sampling. The neural network was utilized to represent the images of Logan slope and intercept. The patient's computed tomography (CT) image or magnetic resonance (MR) image was used as the network input to provide anatomical information. The optimization function was constructed and solved by the alternating direction method of multipliers (ADMM) algorithm. Both simulation and clinical patient datasets demonstrated that the proposed method could generate parametric images with more detailed structures. Quantification results showed that the proposed method results had higher contrast-to-noise (CNR) improvement ratios (PET/CT datasets: 62.25%±29.93%; striatum of brain PET datasets : 129.51%±32.13%, thalamus of brain PET datasets: 128.24%±31.18%) than Gaussian filtered results (PET/CT datasets: 23.33%±18.63%; striatum of brain PET datasets: 74.71%±8.71%, thalamus of brain PET datasets: 73.02%±9.34%) and nonlocal mean (NLM) denoised results (PET/CT datasets: 37.55%±26.56%; striatum of brain PET datasets: 100.89%±16.13%, thalamus of brain PET datasets: 103.59%±16.37%).

Keywords: Deep image prior; Logan plot; PET Parametric image estimation; Unsupervised learning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computer Simulation
  • Humans
  • Image Processing, Computer-Assisted* / methods
  • Positron Emission Tomography Computed Tomography
  • Positron-Emission Tomography* / methods