microRNA-25-3p suppresses osteogenic differentiation of BMSCs in patients with osteoporosis by targeting ITGB3

Acta Histochem. 2022 Aug;124(6):151926. doi: 10.1016/j.acthis.2022.151926. Epub 2022 Jun 28.

Abstract

This study was conducted to investigate the impact of the microRNA (miR)-25-3p/ITGB3 axis on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from patients with osteoporosis (OP). BMSCs isolated from the bone marrow of healthy controls and OP patients were identified by flow cytometry, in which ITGB3 mRNA and miR-25-3p expression was detected by RT-qPCR and ITGB3, Runx2, OPN, ALP, and OSX protein expression by western blot. The binding between ITGB3 and miR-25-3p was assessed by dual-luciferase reporter gene and Ago2-RIP assays. BMSC osteogenic differentiation was observed by alizarin red staining and ALP activity. The differentiation of BMSCs to adipocytes and chondrocytes was measured by oil red O staining and alcian blue staining, respectively. BMSCs were successfully isolated from the bone marrow of healthy controls (normal-BMSCs) and OP patients (OP-BMSCs). ITGB3, Runx2, OPN, ALP, and OSX expression was poorer and miR-25-3p expression was higher in OP-BMSCs than in normal-BMSCs. Mechanistically, ITGB3 was negatively targeted by miR-25-3p. After osteogenic, adipogenic, and chondrogenic differentiation of BMSCs were successfully induced, adipogenic differentiation increased and osteogenic and chondrogenic differentiation decreased in OP-BMSCs compared with normal-BMSCs. Overexpression of ITGB3 facilitated mineralized nodule formation and elevated ALP activity and Runx2, OPN, and ALP expression in OP-BMSCs. miR-25-3p upregulation diminished mineralized nodule formation, ALP activity, and Runx2, OPN, and ALP expression in OP-BMSCs and normal-BMSCs, which was annulled by additional ITGB3 overexpression. miR-25-3p targets ITGB3, thereby suppressing osteogenic differentiation of BMSCs from OP patients.

Keywords: Bone marrow mesenchymal stem cells; ITGB3; MicroRNA-25-3p; Osteogenic differentiation; Osteoporosis.

MeSH terms

  • Cell Differentiation / genetics
  • Cells, Cultured
  • Core Binding Factor Alpha 1 Subunit
  • Humans
  • Integrin beta3 / genetics
  • Integrin beta3 / metabolism
  • Mesenchymal Stem Cells*
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Osteogenesis / genetics
  • Osteoporosis* / genetics
  • Osteoporosis* / metabolism

Substances

  • Core Binding Factor Alpha 1 Subunit
  • ITGB3 protein, human
  • Integrin beta3
  • MIRN25 microRNA, human
  • MicroRNAs