Purpose: Several studies have reported that colchicine attenuates cardiac inflammation and improves cardiac function in myocardial infarction and atrial fibrillation. However, no study has investigated its effect on heart failure with preserved ejection fraction (HFpEF). Hence, this study aimed to assess its efficacy in a high salt diet (HSD)-induced HFpEF rat model.
Methods: A rat hypertension-induced HFpEF model was created by treating Dahl/SS salt-sensitive rats with an HSD for 6 weeks. Colchicine was given via gavage daily as treatment. Cardiac function and inflammation were assessed using echocardiography, histology, and ELISA. Furthermore, the expression levels of NLRP3 and NF-κB signaling pathways were examined.
Results: Treatment with colchicine increased survival and attenuated cardiac dysfunction, as indicated by decreased echocardiographic E/A ratio and longer exercise endurance along with reduced ventricular fibrosis and remodeling in HSD-induced Dahl rats. The treatment also reduced cardiac oxidative stress and inflammatory cell infiltration, as inferred from lower mRNA expressions of TNFα and CCL2 as well as protein expressions of NLRP3 and NF-κB pathways.
Conclusion: The findings signify that colchicine plays a crucial role in alleviating systemic inflammation and NLRP3 inflammation activation as well as in attenuating cardiac dysfunction and fibrosis in HSD-induced HFpEF model. Colchicine, therefore, holds therapeutic potential for further clinical applications.
Keywords: Colchicine; Fibrosis; HFpEF; Inflammation; NRLP3; Oxidative stress.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.