Dynamics of reduced genetic diversity in increasingly fragmented populations of Florida scrub jays, Aphelocoma coerulescens

Evol Appl. 2022 Jun 1;15(6):1018-1027. doi: 10.1111/eva.13421. eCollection 2022 Jun.

Abstract

Understanding the genomic consequences of population decline is important for predicting species' vulnerability to intensifying global change. Empirical information about genomic changes in populations in the early stages of decline, especially for those still experiencing immigration, remains scarce. We used 7834 autosomal SNPs and demographic data for 288 Florida scrub jays (Aphelocoma coerulescens; FSJ) sampled in 2000 and 2008 to compare levels of genetic diversity, inbreeding, relatedness, and lengths of runs of homozygosity (ROH) between two subpopulations within dispersal distance of one another but have experienced contrasting demographic trajectories. At Archbold Biological Station (ABS), the FSJ population has been stable because of consistent habitat protection and management, while at nearby Placid Lakes Estates (PLE), the population declined precipitously due to suburban development. By the onset of our sampling in 2000, birds in PLE were already less heterozygous, more inbred, and on average more related than birds in ABS. No significant changes occurred in heterozygosity or inbreeding across the 8-year sampling interval, but average relatedness among individuals decreased in PLE, thus by 2008 average relatedness did not differ between sites. PLE harbored a similar proportion of short ROH but a greater proportion of long ROH than ABS, suggesting one continuous population of shared demographic history in the past, which is now experiencing more recent inbreeding. These results broadly uphold the predictions of simple population genetic models based on inferred effective population sizes and rates of immigration. Our study highlights how, in just a few generations, formerly continuous populations can diverge in heterozygosity and levels of inbreeding with severe local population decline despite ongoing gene flow.

Keywords: habitat loss; heterozygosity; immigration; inbreeding; population decline; runs of homozygosity.

Associated data

  • figshare/10.6084/m9.figshare.13507440.v1