Imaging of the extracranial internal carotid artery in acute ischemic stroke: assessment of stenosis, plaques, and image quality using relaxation-enhanced angiography without contrast and triggering (REACT)

Quant Imaging Med Surg. 2022 Jul;12(7):3640-3654. doi: 10.21037/qims-21-1122.

Abstract

Background: In stroke magnetic resonance imaging (MRI), contrast-enhanced magnetic resonance angiography (CE-MRA) is the clinical standard to depict extracranial arteries but native MRA techniques are of increased interest to facilitate clinical practice. The purpose of this study was to assess the detection of extracranial internal carotid artery (ICA) stenosis and plaques as well as the image quality of cervical carotid arteries between a novel flow-independent relaxation-enhanced angiography without contrast and triggering (REACT) sequence and CE-MRA in acute ischemic stroke (AIS).

Methods: In this retrospective, single-center study, 105 consecutive patients (65.27±18.74 years, 63 males) were included, who received a standard stroke protocol at 3T in clinical routine including Compressed SENSE (CS) accelerated (factor 4) 3D isotropic REACT (fixed scan time: 02:46 min) and CS accelerated (factor 6) 3D isotropic CE-MRA. Three radiologists independently assessed scans for the presence of extracranial ICA stenosis and plaques (including hyper-/hypointense signal) with concomitant diagnostic confidence using 3-point scales (3= excellent). Vessel quality, artifacts, and image noise of extracranial carotid arteries were subjectively scored on 5-point scales (5= excellent/none). Wilcoxon tests were used for statistical comparison.

Results: Considering CE-MRA as the standard of reference, REACT provided a sensitivity of 89.8% and specificity of 95.2% for any and of 93.5% and 95.8% for clinically relevant (≥50%) extracranial ICA stenosis and yielded a to CE-MRA comparable diagnostic confidence [mean ± standard deviation (SD), median (interquartile range): 2.8±0.5, 3 (3-3) vs. 2.7±0.5, 3 (2-3), P=0.03]. Using REACT, readers detected more plaques overall (n=57.3 vs. 47.7, P<0.001) and plaques of hyperintense signal (n=12.3 vs. 5.7, P=0.02) with higher diagnostic confidence [2.8±0.5, 3 (3-3) vs. 2.6±0.7, 3 (2-3), P<0.001] than CE-MRA. After analyzing a total of 1,260 segments, the vessel quality of all segments combined [4.61±0.66 vs. 4.58±0.68, 5 (4-5) vs. 5 (4-5), P=0.0299] and artifacts [4.51±0.70 vs. 4.44±0.73, 5 (4-5) vs. 5 (4-5), P>0.05] were comparable between the sequences with REACT showing a lower image noise [4.43±0.67 vs. 4.25±0.71, 5 (4-5) vs. 4 (4-5), P<0.001].

Conclusions: Without the use of gadolinium-based contrast agents or triggering, REACT provides a high sensitivity and specificity for extracranial ICA stenosis and a potential improved depiction of adjacent plaques while yielding to CE-MRA comparable vessel quality in a large patient cohort with AIS.

Keywords: Acute ischemic stroke (AIS); contrast-enhanced magnetic resonance angiography (CE-MRA); extracranial arteries; relaxation-enhanced angiography without contrast and triggering (REACT).