Neuroscientists have devoted efforts to explore potential brain recovery after prolonged abstinence in heroin users (HU). However, not much is known about whether frontostriatal circuits can recover after prolonged abstinence in HU. An eight-month longitudinal study was carried out for HU. Two MRI scans were obtained at baseline (HU1) and 8-month follow-up (HU2). The functional and structural connectivities of dorsal and ventral frontostriatal pathways were measured by resting-state functional connectivity (RSFC) and diffusion tensor imaging (DTI). Correlation analyses were employed to reveal the associations between neuroimaging and behavioral changes. Results suggested that relative to healthy controls (HCs), HU1 showed lower fractional anisotropy (FA) in the right dorsolateral prefrontal cortex (DLPFC)-to-caudate tracts and medial orbitofrontal cortex (mOFC)-to-nucleus accumbens (NAc) tracts as well as decreased RSFC in the left mOFC-NAc circuits. Longitudinal results revealed reduced craving and enhanced cognitive control in HU2 compared with HU1. After prolonged abstinence, HU2 showed increased FA values in the right DLPFC-caudate and mOFC-NAc tracts as well as increased RSFC strength in the bilateral mOFC-NAc circuits compared with HU1. In addition, changes in RSFC and FA values in the right mOFC-NAc circuit were negatively correlated with craving score changes. Similarly, negative correlations were also found between changes of RSFC in the bilateral DLPFC-caudate circuits and TMT-A scores. We provided scientific evidence for brain recovery of the dorsal and ventral frontostriatal circuits in HU after prolonged abstinence, and these circuits may be potential neuroimaging biomarkers for cognition and craving changes.
Keywords: Brain recovery; Cognition; Craving; Frontostriatal circuits; Heroin.
Copyright © 2022 Elsevier Ltd. All rights reserved.