This article analyzes the relationship between cell division cycle (CDC20) molecules and oncology outcomes in patients with renal clear cell carcinoma (KIRC). CDC20 appears to act as a regulatory protein interacting with many other proteins at multiple points in the cycle. The RNA sequencing data and corresponding clinical information of CDC20 molecules were obtained from The Cancer Genome Atlas (TCGA) database. The expression of CDC20 in kidney renal clear cell carcinoma tissue and adjacent normal tissue was detected by immunohistochemical methods. Logistic analysis was performed to analyze the role of CDC20 in the clinicopathological characteristics and prognosis of KIRC. Gene Set Enrichment Analysis (GSEA) was used to identify the signal pathways which were related to CDC20. Independent prognostic factors were evaluated using univariate and multivariate Cox regression analysis. A nomogram involved in CDC20 expression and clinicopathological variables was conducted to predict overall survival (OS) in KIRC patients at 1, 3, and 5 years. Furthermore, the relation between CDC20 and immunity was also studied. Our results showed that CDC20 was upregulated in kidney renal clear cell carcinoma tissues, accompanying shorter OS (all P < 0.05). According to the results obtained by immunohistochemistry and TCGA database, CDC20 was significantly upregulated in kidney renal clear cell carcinoma tissues compared with neighboring normal kidney tissues. Univariate and multivariate Cox regression analysis showed that high expression of CDC20 was an independent prognostic factor of poor prognosis in kidney renal clear cell carcinoma patients (all P < 0.05). GSEA analysis suggested that the high expression of CDC20 was related to eight multiple signaling pathways. In addition, CDC20 was linked to tumour mutation burden (TMB), immune checkpoint molecules, tumour microenvironment, and immunological infiltration.
Copyright © 2022 Jiaqi Shi et al.