The neurotrophin family is composed of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), Neurotrophin 3 (NT3) and NT4. These neurotrophins regulate several crucial functions through the activation of two types of transmembrane receptors, namely p75, which binds all neurotrophins with a similar affinity, and tyrosine kinase (Trk) receptors. Neurotrophins, besides their well-known pivotal role in the development and maintenance of the nervous system, also display the ability to regulate the development of taste buds in mammals. Therefore, the aim of this study is to investigate if NGF, BDNF, NT3 and NT4 are also present in the taste buds of zebrafish (Danio rerio), a powerful vertebrate model organism. Morphological analyses carried out on adult zebrafish showed the presence of neurotrophins in taste bud cells of the oropharyngeal cavity, also suggesting that BDNF positive cells are the prevalent cell population in the posterior part of the oropharyngeal region. In conclusion, by suggesting that all tested neurotrophins are present in zebrafish sensory cells, our results lead to the assumption that taste bud cells in this fish species contain the same homologous neurotrophins reported in mammals, further confirming the high impact of the zebrafish model in translational research.
Keywords: Neurotrophin 3 (NT3); Neurotrophin 4 (NT4); brain derived neurotrophic factor (BDNF); nerve growth factor (NGF); taste buds (TBs).