Cellular landscaping of cisplatin resistance in cervical cancer

Biomed Pharmacother. 2022 Sep:153:113345. doi: 10.1016/j.biopha.2022.113345. Epub 2022 Jul 8.

Abstract

Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.

Keywords: Anti-cancer activity; Cell signaling; Cervical cancer; Chemotherapeutics; Cisplatin resistance; Drug resistance; Tumor microenvironment.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Cell Line, Tumor
  • Cisplatin / pharmacology
  • Cisplatin / therapeutic use
  • Drug Resistance, Neoplasm
  • Female
  • HeLa Cells
  • Humans
  • Papillomaviridae
  • Tumor Microenvironment
  • Uterine Cervical Neoplasms* / drug therapy
  • Uterine Cervical Neoplasms* / genetics
  • Uterine Cervical Neoplasms* / pathology

Substances

  • Antineoplastic Agents
  • Cisplatin