Rhoptry secretion system structure and priming in Plasmodium falciparum revealed using in situ cryo-electron tomography

Nat Microbiol. 2022 Aug;7(8):1230-1238. doi: 10.1038/s41564-022-01171-3. Epub 2022 Jul 11.

Abstract

Apicomplexan parasites secrete contents of the rhoptries, club-shaped organelles in the apical region, into host cells to permit their invasion and establishment of infection. The rhoptry secretory apparatus (RSA), which is critical for rhoptry secretion, was recently discovered in Toxoplasma and Cryptosporidium. It is unknown whether a similar molecular machinery exists in the malaria parasite Plasmodium. In this study, we use in situ cryo-electron tomography to investigate the rhoptry secretion system in P. falciparum merozoites. We identify the presence of an RSA at the cell apex and a morphologically distinct apical vesicle docking the tips of the two rhoptries to the RSA. We also discover two additional rhoptry organizations that lack the apical vesicle. Using subtomogram averaging, we reveal different conformations of the RSA structure corresponding to different rhoptry organizations. Our results highlight previously unknown steps in the process of rhoptry secretion and indicate a regulatory role for the conserved apical vesicle in host invasion by apicomplexan parasites.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Cryptosporidiosis*
  • Cryptosporidium*
  • Electron Microscope Tomography
  • Host-Parasite Interactions
  • Humans
  • Malaria, Falciparum*
  • Plasmodium falciparum
  • Protozoan Proteins / genetics

Substances

  • Protozoan Proteins