Arecoline, a major alkaloid of the areca nut, has potential toxicity to the nervous system. Our previous study reveals that the neurotoxicity of arecoline involves in inhibited endogenous hydrogen sulfide (H2 S) generation. Therefore, the present study investigated whether exogenous H2 S protects against arecoline-induced neurotoxicity and further explore the underlying mechanisms focusing on leptin/leptin receptor signaling pathway. The cell viability was measured by CCK-8 kit. The apoptosis were detected by Hoechst 33258 and Annexin V/PI (propidium iodide) staining. The protein expressions were determined by Western blot analysis. Our results demonstrated that NaHS, an exogenous H2 S donor, significantly increases the cell viability, decreases apoptosis ratio, and reduces caspase-3 activity as well as Bax/Bcl-2 ratio in PC12 cells exposed to arecoline, indicating the protection of H2 S against arecoline-induced cytotoxicity and apoptosis. Also, NaHS attenuated arecoline-induced endoplasmic reticulum (ER) stress, as evidenced by the decreases in the expressions of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Cleaved caspase-12. Meanwhile, NaHS promoted leptin/leptin receptor signaling pathway in arecoline-exposed PC12 cells, as illustrated by upregulations of leptin and leptin receptor expressions. Furthermore, leptin tA, an antagonist of leptin receptor, obviously abolished the inhibitory effects of NaHS on arecoline-induced cytotoxicity, apoptosis, and ER stress in arecoline-exposed PC12 cells. Taken together, these results suggested that H2 S prevents arecoline-induced neurotoxicity via enhancing the leptin/leptin receptor signaling pathway.
Keywords: arecoline; hydrogen sulfide; leptin/leptin receptor signaling pathway; neurotoxicity.
© 2022 International Federation for Cell Biology.