Assessing aging impact on growth potential of Vitamin E primed soybean seeds via biochemical profiling

Saudi J Biol Sci. 2022 May;29(5):3717-3726. doi: 10.1016/j.sjbs.2022.03.013. Epub 2022 Mar 10.

Abstract

Soybean [Glycine max (L.) Merr.] is a high value crop owing to its nutrient rich profile, consisting of some of the largest reserve of proteins and oils among all plant crops. High yielding soybean variety seeds are of great intrinsic value as part of strategies to gain larger yield outputs over the years. These seeds often tend to lose their viability and corresponding storage period. The study is primarily focused on understanding and estimating the impact of storage conditions and influence of biochemical changes that leads to deteriorating seed health. Vitamin E is an essential compound that provides shielding effect to plant seeds against environmental stress. For this purpose seed priming of vitamin E was performed with a concentration of 300mgL-1 applied on to seeds. A total of seven promising cultivars were accessed for this; including Swat-20, Swat-84, NARC-2. Malakand, Rawal, Ajmeri and FaisalSoy. Results shows that all cultivars tend to lose their yield potential which is greatly in line with storage induced biochemical changes. Among the cultivars, Swat-84 and Swat-20 were resilient to an extent towards harmful storage stress impact. The present study has shown that application of vitamin E seed coating tend to enhance positive traits in stored seeds (including concentrations of CAT, SOD, TSS, etc.) in comparison to untreated seeds showing a healthy impact of the treatment on seed health under storage conditions. It is suggested that storing vitamin E treated seeds under optimum conditions as an effective method for attaining viable seeds after long terms storage. Findings of the present study can be used for future studies, assessment and designing of seed storage system in a manner to reduce negative impact on seed growth potential during long term storages.

Keywords: AA, Artificial Aging; Artificial seed aging; Biochemical changes; CAT, Catalase; EC, Electrical Conductivity; GP, Germination Percentage; MDA, Malondialdehyde; NA, Natural Aging; NAE, Natural Aging Vitamin E treated; Natural seed aging; RS, Reducing Sugars; SOD, Superoxide Dismutase; Seed priming; Soybean; TSS, Total Soluble sugars; Vitamin E.