Polyetheretherketone (PEEK) has been widely used in bone repair, but it often fails due to bacterial infection. Herein, a high-strength porous polyetheretherketone scaffold (ps-PK) loaded with antibacterial drug-loaded hydrogel strategy is proposed. The prepared ps-PK possesses high porosity (30.8-64.7%) and the compression modulus is between 0.4 and 0.98 GPa. The interconnected pore-type structure endows it with a drug loading capacity. Poly(D,L -lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L -lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermoresponsive hydrogels loaded with vancomycin are used as the drug sustained-release system. The vancomycin-loaded hydrogels in the solution state at a low temperature are filled into a porous polyetheretherketone scaffold (ps-PK-VGel) and formed a gel state after implantation in vivo. The antibacterial rate of ps-PK-VGel against methicillin-resistant staphylococcus aureus in vitro is 99.7% and histological observation in vivo demonstrates that the ps-PK-VGel shows obvious antibacterial activity. Given its excellent antibacterial ability and mechanical properties, the porous PEEK scaffold composite drug-loaded thermosensitive hydrogel has great potential in bone repair surgery applications.
Keywords: antibacterial; bone repair; porous polyetheretherketone scaffold; thermally induced phase separation; thermosensitive hydrogel.
© 2022 Wiley-VCH GmbH.