The Gastrointestinal Load of Carbapenem-Resistant Enterobacteriacea Is Associated With the Transition From Colonization to Infection by Klebsiella pneumoniae Isolates Harboring the blaKPC Gene

Front Cell Infect Microbiol. 2022 Jul 5:12:928578. doi: 10.3389/fcimb.2022.928578. eCollection 2022.

Abstract

Background: Healthcare-associated infections by carbapenem-resistant Klebsiella pneumoniae are difficult to control. Virulence and antibiotic resistance genes contribute to infection, but the mechanisms associated with the transition from colonization to infection remain unclear.

Objective: We investigated the transition from carriage to infection by K. pneumoniae isolates carrying the K. pneumoniae carbapenemase-encoding gene bla KPC (KpKPC).

Methods: KpKPC isolates detected within a 10-year period in a single tertiary-care hospital were characterized by pulsed-field gel electrophoresis (PFGE), multilocus sequencing typing, capsular lipopolysaccharide and polysaccharide typing, antimicrobial susceptibility profiles, and the presence of virulence genes. The gastrointestinal load of carbapenem-resistant Enterobacteriaceae and of bla KPC-carrying bacteria was estimated by relative quantification in rectal swabs. Results were evaluated as contributors to the progression from carriage to infection.

Results: No PGFE type; ST-, K-, or O-serotypes; antimicrobial susceptibility profiles; or the presence of virulence markers, such yersiniabactin and colibactin, were associated with carriage or infection, with ST437 and ST11 being the most prevalent clones. Admission to intensive and semi-intensive care units was a risk factor for the development of infections (OR 2.79, 95% CI 1.375 to 5.687, P=0.005), but higher intestinal loads of carbapenem-resistant Enterobacteriaceae or of bla KPC-carrying bacteria were the only factors associated with the transition from colonization to infection in this cohort (OR 8.601, 95% CI 2.44 to 30.352, P<0.001).

Conclusion: The presence of resistance and virulence mechanisms were not associated with progression from colonization to infection, while intestinal colonization by carbapenem-resistant Enterobacteriacea and, more specifically, the load of gastrointestinal carriage emerged as an important determinant of infection.

Keywords: Carbapenem-resistant Enterobacteriaceae (CRE); Klebsiella pneumoniae; bla KPC gene; gastrointestinal carriage; virulence factors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins / genetics
  • Carbapenem-Resistant Enterobacteriaceae*
  • Carbapenems / pharmacology
  • Cross Infection* / microbiology
  • Humans
  • Klebsiella Infections* / microbiology
  • Klebsiella pneumoniae / genetics
  • Microbial Sensitivity Tests
  • Multilocus Sequence Typing
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Carbapenems
  • beta-Lactamases