Indium released in agroecosystems is becoming an emerging plant stressor, causing cellular damage and consequently crop yield losses. Previous studies have focused on indium-induced toxicity in plants, while plant adaptive responses to such emerging metal xenobiotics are poorly understood. Here, we explored the relationship of autophagy and programmed cell death (PCD) in wheat roots under indium stress. Indium treatment significantly decreased root activity and cell viability, and suppressed the length of root epidermal cells in the elongation zones. These symptoms may be associated with indium-induced PCD, as indium-stressed wheat roots displayed condensed and granular nuclei, increased number of TUNEL-positive nuclei, enhanced nuclear DNA fragmentation and caspase-3-like protease activity compared to untreated roots. Accordingly, indium enhanced the expression levels of TaMCA1 and TaMCA4, two major metacaspase genes mediated PCD in wheat plants. The enhanced expression of autophagy genes and formation of autophagosomes indicate that autophagy could regulate metabolic adaptation and repair stress-induced damage in wheat roots. Furthermore, reinforcing autophagy by activator rapamycin significantly decreased the number of TUNEL-positive nuclei and the activity of caspase-3-like protease, whereas inhibition of autophagy by 3-methyladenine aggravated diagnostic markers for PCD. These results together suggest that autophagy suppresses indium-induced PCD in wheat roots.
Keywords: Autophagy; Indium; Programmed cell death; Stress; Wheat.
Copyright © 2022 Elsevier B.V. All rights reserved.