Audiovisual spatial recalibration but not integration is shaped by early sensory experience

iScience. 2022 May 23;25(6):104439. doi: 10.1016/j.isci.2022.104439. eCollection 2022 Jun 17.

Abstract

To clarify the role of sensory experience during early development for adult multisensory learning capabilities, we probed audiovisual spatial processing in human individuals who had been born blind because of dense congenital cataracts (CCs) and who subsequently had received cataract removal surgery, some not before adolescence or adulthood. Their ability to integrate audio-visual input and to recalibrate multisensory spatial representations was compared to normally sighted control participants and individuals with a history of developmental (later onset) cataracts. Results in CC individuals revealed both normal multisensory integration in audiovisual trials (ventriloquism effect) and normal recalibration of unimodal auditory localization following audiovisual discrepant exposure (ventriloquism aftereffect) as observed in the control groups. In addition, only the CC group recalibrated unimodal visual localization after audiovisual exposure. Thus, in parallel to typical multisensory integration and learning, atypical crossmodal mechanisms coexisted in CC individuals, suggesting that multisensory recalibration capabilities are defined during a sensitive period in development.

Keywords: Cognitive neuroscience; Developmental neuroscience; Ophthalmology; Sensory neuroscience.