The relationship between the ductal and lobular components of invasive ductolobular carcinomas (IDLC) has not been fully elucidated. In this study, the molecular alterations of both components were analyzed in a series of 20 IDLC that were selected, not only by morphologic criteria, but also by the loss of E-cadherin expression in the lobular component. We found that 80% of tumors shared alterations of driver genes in both components, being PIK3CA the most common alteration. In addition, 45% of IDLC carried CDH1 mutations in their lobular component that were absent in the ductal component. Fluorescent in situ hybridization analysis of the CDH1 gene excluded homozygous CDH1 loss as a frequent cause of E-cadherin loss in tumors without CDH1 mutations. In addition, no pathogenic mutations of catenin genes were detected in this series of tumors. In 25% of tumors, actionable mutations in PIK3CA , AKT1 , and ERBB2 were found in only 1 component. Altogether, our results confirm that most IDLC derive from invasive carcinoma of no special type, in which a population of cells lose E-cadherin and acquire a lobular phenotype. The frequency of CDH1 mutations in IDLC appears to be lower than in conventional invasive lobular carcinomas, suggesting the implication of alternative mechanisms of E-cadherin loss. Moreover, molecular heterogeneity between ductal and lobular areas suggests the need for molecular characterization of both components to guide targeted therapies.
Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.