Taurine plays an important role in neural growth and function from early to adult life, particularly in learning and memory via BDNF action. This study tested the hypothesis that BDNF differentially potentiates entorhinal-hippocampal synaptic transmission in vivo in adult rats. In anesthetized male Sprague-Dawley rats, a stainless steel recording electrode with an attached microinjector was placed into CA1 and the dentate gyrus to record fEPSP, and a paired stainless steel electrode was inserted into entorhinal cortex for continuous paired-pulse stimulation of that brain region. In the dentate gyrus, microinjection of BDNF resulted in a gradual increase in the peak slope of the fEPSP. Following the infusion, the peak fEPSP began to rise in about 8 min, reached a maximum of 120 ± 2% (from baseline) by about 20 min, and remained near peak elevation (~115%) for more than 30 min. In contrast, the same dose of BDNF when injected into CA1 had no consistent effect on fEPSP slopes in the CA1. Further, an equimolar cytochrome C (horse heart) infusion had no significant effect on fEPSP slopes in either the dentate gyrus or CA1. The potentiation effect of BDNF in the dentate gyrus is consistent with a significant increase in power spectral density of dentate gyrus field potentials at 70-200 Hz, but not at frequencies below 70 Hz. In addition, the CA1 power spectral density was not affected by BDNF (compared to cytochrome C). These data indicate that in vivo BDNF potentiates entorhinal-hippocampal synaptic transmission in dentate gyrus, but not in CA1.
Keywords: BDNF; Dentate gyrus; Entorhinal cortex; Field potential; Hippocampus; Power spectral density.
© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.