Immunophenotypic and Molecular Features of Acute Myeloid Leukemia with Plasmacytoid Dendritic Cell Differentiation Are Distinct from Blastic Plasmacytoid Dendritic Cell Neoplasm

Cancers (Basel). 2022 Jul 11;14(14):3375. doi: 10.3390/cancers14143375.

Abstract

Acute myeloid leukemia (AML) with ≥2% plasmacytoid dendritic cells (pDC) has been recently described as AML with pDC differentiation (pDC-AML) characterized by pDC expansion with frequent RUNX1 mutations. In this study, we investigated a cohort of 53 pDC-AML cases representing about 3% of all AML cases. We characterized their immunophenotype and genetic profiles and compared these findings with blastic plasmacytoid dendritic cell neoplasm (BPDCN). pDC-differentiation/expansion was preferentially observed in AML with an immature myeloid or myelomonocytic immunophenotype, where myeloblasts were frequently positive for CD34 (98%), CD117 (94%), HLA-DR (100%) and TdT (79%), with increased CD123 (89%) expression. The median number of pDCs in pDC-AML was 6.6% (range, 2% to 26.3%) and their immunophenotype reminiscent of pDCs in early or intermediate stages of differentiation. The immunophenotype of pDCs in pDC-AML was different from BPDCN (n = 39), with major disparities in CD34 (96% vs. 0%), CD56 (8% vs. 97%) and TCL1 (12% vs. 98%) and significant differences in frequency of CD4, CD13, CD22, CD25, CD36, CD38, CD117 and CD303 expression. At the molecular level, the genetic landscapes of pDC-AML and BPDCN also differ, with RUNX1 mutations detected in 64% of pDC-AML versus 2% of BPDCN. Disparities in TET2 (21% vs. 56%), FLT3 (23% vs. 0%), DNMT3A (32% vs. 10%) and ZRSR2 (2% vs. 16%) (all p < 0.05) were also detected. The distinct immunophenotypic and mutation profiles of pDC-AML and BPDCN indicate that the neoplastic pDCs in pDC-AML and BPDCN derived from different subsets of pDC precursors.

Keywords: BPDCN; acute myeloid leukemia; flow cytometry; immunophenotype; mutation; plasmacytoid dendritic cells.

Grants and funding

This research received no external funding.