Next-generation sequencing has revolutionized entomological study, rendering it possible to analyze the genomes and transcriptomes of non-model insects. However, use of this technology is often limited to obtaining the nucleotide sequences of target or related genes, with many of the acquired sequences remaining unused because other available sequences are not sufficiently annotated. To address this issue, we have developed a functional annotation workflow for transcriptome-sequenced insects to determine transcript descriptions, which represents a significant improvement over the previous method (functional annotation pipeline for insects). The developed workflow attempts to annotate not only the protein sequences obtained from transcriptome analysis but also the ncRNA sequences obtained simultaneously. In addition, the workflow integrates the expression-level information obtained from transcriptome sequencing for application as functional annotation information. Using the workflow, functional annotation was performed on the sequences obtained from transcriptome sequencing of the stick insect (Entoria okinawaensis) and silkworm (Bombyx mori), yielding richer functional annotation information than that obtained in our previous study. The improved workflow allows the more comprehensive exploitation of transcriptome data and is applicable to other insects because the workflow has been openly developed on GitHub.
Keywords: RNA sequencing; functional annotation; silkworm; stick insect; transcriptome assembly.