Tumor-infiltrating lymphocytes (TILs), identified on HE-stained histopathological images in the cancer area, are indicators of the adaptive immune response against cancers and play a major role in personalized cancer immunotherapy. Recent works indicate that the spatial organization of TILs may be prognostic of disease-specific survival and recurrence. However, there are a limited number of methods that were proposed and tested in analyses of the spatial structure of TILs. In this work, we evaluated 14 different spatial measures, including the one developed for other omics data, on 10,532 TIL maps from 23 cancer types in terms of reproducibility, uniqueness, and impact on patient survival. For each spatial measure, 16 different scenarios for the definition of prognostic factor were tested. We found no difference in survival prediction when TIL maps were stored as binary images or continuous TIL probability scores. When spatial measures were discretized into a low and high category, a higher correlation with survival was observed. Three measures with the highest cancer prognosis capability were spatial autocorrelation, GLCM M1, and closeness centrality. Most of the tested measures could be further tuned to increase prediction performance.
Keywords: TILs; cancer prognosis; histopathological images; spatial measures; survival.