The activity of excitatory and inhibitory neural circuits in the motor cortex can be probed and modified by transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS), noninvasively. At present, not only has a consensus regarding the interhemispheric effect of high frequency rTMS not been reached, but the attributes of these TMS-related circuits are also poorly understood. To address this question comprehensively, we integrated a single- and paired-pulse TMS evaluation with excitatory 20-Hz rTMS intervention in order to probe the interhemispheric effect on the intracortical circuits by high-frequency rTMS. In the rest state, after 20-Hz rTMS, a significant increase of single-pulse MEP and paired-pulse intracortical facilitation (ICF) in the non-stimulated hemisphere was observed with good test-retest reliability. Intracortical inhibition (measured by the cortical silent period) in the unstimulated hemisphere also increased after rTMS. No significant time-course change was observed in the sham-rTMS group. The results provide the evidence that 20-Hz rTMS induced a reliable interhemispheric facilitatory effect. Findings from the present study suggest that the glutamatergic facilitatory system and the GABAergic inhibitory system may vary synchronously.
Keywords: interhemispheric facilitation; intracortical facilitation; intracortical inhibition; motor cortex; transcranial magnetic stimulation; voluntary movement.