Enhanced Metal-Semiconductor Interaction for Photocatalytic Hydrogen-Evolution Reaction

Chemistry. 2022 Oct 7;28(56):e202201590. doi: 10.1002/chem.202201590. Epub 2022 Aug 16.

Abstract

The selective immobilization of noble metals right at the place where photogenerated electrons migrate through the photodeposition approach is a unique strategy to load cocatalysts on semiconductors for solar hydrogen production. However, a poor metal-semiconductor interaction is often formed, which not only hinders the interfacial charge transfer, but also results in the easy aggregation and shedding of cocatalysts during photocatalytic reactions. Herein, it is demonstrated that the photodeposited ultrafine metals, such as nanosized Au, can be well stabilized on TiO2 nanocrystallines without sintering by employing a sacrificial carbon coating annealing strategy to strengthen the metal-support interaction. Benefiting from the improved interfacial contact between Au and TiO2 for fast charge transfer and the well-preserved size-dependent catalytic behavior of Au nanoparticles toward hydrogen evolution reaction, the annealed Au/TiO2 exhibits a significant enhanced activity toward photocatalytic H2 production with good durability.

Keywords: cocatalyst-photocatalyst interaction; interfacial engineering; photocatalysis; photodeposition.