One of the primary goals in cognitive neuroscience is to understand the neural mechanisms on which cognition is based. Researchers are trying to find how cognitive mechanisms are related to oscillations generated due to brain activity. The research focused on this topic has been considerably aided by developing non-invasive brain stimulation techniques. The dynamics of brain networks and the resultant behavior can be affected by non-invasive brain stimulation techniques, which make their use a focus of interest in many experiments and clinical fields. One essential non-invasive brain stimulation technique is transcranial electrical stimulation (tES), subdivided into transcranial direct and alternating current stimulation. tES has recently become more well-known because of the effective results achieved in treating chronic conditions. In addition, there has been exceptional progress in the interpretation and feasibility of tES techniques. Summarizing the beneficial effects of tES, this article provides an updated depiction of what has been accomplished to date, brief history, and the open questions that need to be addressed in the future. An essential issue in the field of tES is stimulation duration. This review briefly covers the stimulation durations that have been utilized in the field while monitoring the brain using functional-near infrared spectroscopy-based brain imaging.
Keywords: electrical stimulation; functional-near infrared spectroscopy (fNIRS); hemodynamic response; neuromodulation; transcranial alternating current stimulation (tACS); transcranial direct current stimulation (tDCS).
© 2022 IOP Publishing Ltd.