Developing targeted drug delivery systems is an urgent need to decrease the side effects and increase the drug's efficiency. Most cancer cells show an increased sugar consumption compared to healthy cells due to the deregulation of sugar transporters. Consequently, liposomes, as a biocompatible nanocarrier, could be surface decorated by sugars to enhance drug targeting into cancer cells. Our work outlines a new strategy to easily manufacture sucrose decorated liposomes using sucrose stearate, a biocompatible and biodegradable non-ionic surfactant, with a scalable microfluidic approach. Sucrose decorated liposomes were loaded with berberine hydrochloride, a well-known phytochemical compound to investigate its effects on triple-negative breast cancer cells (MDA-MB-231). Using the microfluidic manufacturing system, we prepared berberine-loaded liposomes using a mixture of phosphatidylcholine and cholesterol with and without sucrose stearate with a size up to 140 nm and narrow polydispersity. Stability was confirmed for 90 days, and the in vitro release profile was evaluated. The formulations showed acceptable in vitro biocompatibility and significantly higher anti-proliferative effect on MDA-MB-231 cell line. These results have been confirmed by an increased uptake evaluated by flow cytometry and confocal microscopy. Taken together, our findings represent an innovative, easy, and scalable approach to obtain sugar decorated liposomal formulations without any surface-chemistry reactions. They can be potentially used as an anticancer targeted drug delivery system.
Keywords: 3D printed microfluidic chips; Additive manufacturing; Nanomedicine; Sucrose esters; Surface modification.
Copyright © 2022 Elsevier B.V. All rights reserved.