Bone Marrow Relative Biological Effectiveness for a 212Pb-labeled Anti-HER2/neu Antibody

Int J Radiat Oncol Biol Phys. 2023 Feb 1;115(2):518-528. doi: 10.1016/j.ijrobp.2022.07.1842. Epub 2022 Aug 1.

Abstract

Purpose: We have determined the in vivo relative biological effectiveness (RBE) of an alpha-particle-emitting radiopharmaceutical therapeutic agent (212Pb-labeled anti-HER2/neu antibody) for the bone marrow, a potentially dose-limiting normal tissue.

Methods and materials: The RBE was measured in mice using femur marrow cellularity as the biological endpoint. External beam radiation therapy (EBRT), delivered by a small-animal radiation research platform was used as the reference radiation. Alpha-particle emissions were delivered by 212Bi after the decay of its parent nuclide 212Pb, which was conjugated onto an anti-HER2/neu antibody. The alpha-particle absorbed dose to the marrow after an intravenous administration (tail vein) of 122.1 to 921.3 kBq 212Pb-TCMC-7.16.4 was calculated. The mice were sacrificed at 0 to 7 days after treatment and the radioactivity from the femur bone marrow was measured. Changes in marrow cellularity were assessed by histopathology.

Results: The dose response for EBRT and 212Pb-anti-HER2/neu antibody were linear-quadratic and linear, respectively. On transforming the EBRT dose-response relationship into a linear relationship using the equivalent dose in 2-Gy fractions of external beam radiation formalism, we obtained an RBE (denoted RBE2) of 6.4, which is independent of cellularity and absorbed dose.

Conclusions: Because hematologic toxicity is dose limiting in almost all antibody-based RPT, in vivo measurements of RBE are important in helping identify an initial administered activity in phase 1 escalation trials. Applying the RBE2 and assuming typical antibody clearance kinetics (biological half-life of 48 hours), using a modified blood-based dosimetry method, an average administered activity of approximately 185.5 MBq (5.0 mCi) per patient could be administered before hematologic toxicity is anticipated.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antibodies, Monoclonal / therapeutic use
  • Bone Marrow*
  • Lead*
  • Mice
  • Radiometry
  • Relative Biological Effectiveness

Substances

  • Lead
  • Antibodies, Monoclonal