A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike

Nat Commun. 2022 Aug 4;13(1):4539. doi: 10.1038/s41467-022-32232-0.

Abstract

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19 Vaccines
  • COVID-19*
  • Epitopes
  • Humans
  • Immunoglobulin Isotypes
  • Receptors, Antigen, B-Cell
  • SARS-CoV-2*
  • Spike Glycoprotein, Coronavirus

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19 Vaccines
  • Epitopes
  • Immunoglobulin Isotypes
  • Receptors, Antigen, B-Cell
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2