Abstract
Extracellular vesicles (EVs) can carry pathological cargo and play an active role in disease progression. Neutral sphingomyelinase-2 (nSMase2) is a critical regulator of EV biogenesis, and its inhibition has shown protective effects in multiple disease states. 2,6-Dimethoxy-4-(5-phenyl-4-thiophen-2-yl-1H-imidazol-2-yl)phenol (DPTIP) is one of the most potent (IC50 = 30 nM) inhibitors of nSMase2 discovered to date. However, DPTIP exhibits poor oral pharmacokinetics (PK), limiting its clinical development. To overcome DPTIP's PK limitations, we synthesized a series of prodrugs by masking its phenolic hydroxyl group. When administered orally, the best prodrug (P18) with a 2',6'-diethyl-1,4'-bipiperidinyl promoiety exhibited >fourfold higher plasma (AUC0-t = 1047 pmol·h/mL) and brain exposures (AUC0-t = 247 pmol·h/g) versus DPTIP and a significant enhancement of DPTIP half-life (2 h vs ∼0.5 h). In a mouse model of acute brain injury, DPTIP released from P18 significantly inhibited IL-1β-induced EV release into plasma and attenuated nSMase2 activity. These studies report the discovery of a DPTIP prodrug with potential for clinical translation.
Publication types
-
Research Support, Non-U.S. Gov't
-
Research Support, N.I.H., Extramural
MeSH terms
-
Animals
-
Brain / metabolism
-
Disease Models, Animal
-
Esterases
-
Mice
-
Phenols / pharmacology
-
Prodrugs* / pharmacokinetics
-
Sphingomyelin Phosphodiesterase
Substances
-
Phenols
-
Prodrugs
-
Esterases
-
Sphingomyelin Phosphodiesterase