The efficient production of dopaminergic neurons via the direct conversion of other cell types is of interest as a potential therapeutic approach for Parkinson's disease. This study aimed to investigate the use of elongated porous gold nanorods (AuNpRs) as an enhancer of cell fate conversion. We observed that AuNpRs promoted the direct conversion of fibroblasts into dopaminergic neurons in vivo and in vitro. The extent of conversion of fibroblasts into dopaminergic neurons depended on the porosity of AuNpRs, as determined by their aspect ratio. The mechanism underlying these results involves specific AuNpR-induced transcriptional changes that altered the expression of antioxidant-related molecules. The generation of dopaminergic neurons via the direct conversion method will open a new avenue for developing a therapeutic platform for Parkinson's disease treatment. STATEMENT OF SIGNIFICANCE: In this study, we applied modified gold nanoporous materials (AuNpRs) to the direct lineage reprogramming of dopaminergic neurons. The cell reprogramming process is energy-intensive, resulting in an excess of oxidative stress. AuNpRs facilitated the direct conversion of dopaminergic neurons by ameliorating oxidative stress during the reprogramming process. We have found this mechanistic clue from high throughput studies in this research work.
Keywords: Antioxidant-related molecule; Direct lineage reprogramming; Induced dopaminergic neurons; Parkinson's disease; Porous gold nanoparticles.
Copyright © 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.