The Application of the CRISPR-Cas System in Antibiotic Resistance

Infect Drug Resist. 2022 Aug 2:15:4155-4168. doi: 10.2147/IDR.S370869. eCollection 2022.

Abstract

The emergence and global epidemic of antimicrobial resistance (AMR) poses a serious threat to global public health in recent years. AMR genes are shared between bacterial pathogens mainly via horizontal gene transfer (HGT) on mobile genetic elements (MGEs), thereby accelerating the spread of antimicrobial resistance (AMR) and increasing the burden of drug resistance. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are an RNA-guided adaptive immune system in prokaryotes that recognizes and defends against invasive genetic elements such as phages and plasmids. Because of its specifically target and cleave DNA sequences encoding antibiotic resistance genes, CRISPR/Cas system has been developed into a new gene-editing tool for the prevention and control of bacterial drug resistance. CRISPR-Cas plays a potentially important role in controlling horizontal gene transfer and limiting the spread of antibiotic resistance. In this review, we will introduce the structure and working mechanism of CRISPR-Cas systems, followed by delivery strategies, and then focus on the relationship between antimicrobial resistance and CRISPR-Cas. Moreover, the challenges and prospects of this research field are discussed, thereby providing a reference for the prevention and control of the spread of antibiotic resistance.

Keywords: CRISPR-Cas; antibiotic resistance; horizontal gene transfer.

Publication types

  • Review

Grants and funding

This study was supported by grants from the Natural Science Foundation of Jiangsu Province (BK20191210), the fifth phase of the “333 Project” scientific research project in Jiangsu Province (BRA2019248), the Jiangsu Commission of Health (H2018073), and the Subject of Lianyungang Science and Technology Bureau (SF2015).