Standard Mendelian randomization (MR) analysis can produce biased results if the genetic variant defining an instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment variable. We provide novel identification conditions for the causal effect of a treatment in the presence of unmeasured confounding by leveraging a possibly invalid IV for which both the IV independence and exclusion restriction assumptions may be violated. The proposed Mendelian randomization mixed-scale treatment effect robust identification (MR MiSTERI) approach relies on (i) an assumption that the treatment effect does not vary with the possibly invalid IV on the additive scale; (ii) that the confounding bias does not vary with the possibly invalid IV on the odds ratio scale; and (iii) that the residual variance for the outcome is heteroskedastic with respect to the possibly invalid IV. Although assumptions (i) and (ii) have, respectively, appeared in the IV literature, assumption (iii) has not; we formally establish that their conjunction can identify a causal effect even with an invalid IV. MR MiSTERI is shown to be particularly advantageous in the presence of pervasive heterogeneity of pleiotropic effects on the additive scale. We propose a simple and consistent three-stage estimator that can be used as a preliminary estimator to a carefully constructed efficient one-step-update estimator. In order to incorporate multiple, possibly correlated, and weak invalid IVs, a common challenge in MR studies, we develop a MAny Weak Invalid Instruments (MR MaWII MiSTERI) approach for strengthened identification and improved estimation accuracy. Both simulation studies and UK Biobank data analysis results demonstrate the robustness of the proposed methods.
Keywords: Mendelian randomization; causal inference; horizontal pleiotropy; invalid instrument; unmeasured confounding; weak instrument.
© 2022 The International Biometric Society.