Triple-negative breast cancer (TNBC) has the poorest prognosis of all breast cancer subtypes. Recently, the activation of NF-κB, which is involved in the growth and survival of malignant tumors, has been demonstrated in TNBC, suggesting that NF-κB may serve as a new therapeutic target. In the present study, we examined whether dimethyl fumarate (DMF), an NF-κB inhibitor, induces apoptosis in TNBC cells and enhances the apoptosis-inducing effect of paclitaxel and adriamycin. Cell survival was analyzed by the trypan blue assay and apoptosis assay. Protein detection was examined by immunoblotting. The activation of NF-κB p65 was correlated with poor prognosis in patients with TNBC. DMF induced apoptosis in MDA-MB-231 and BT-549 cells at concentrations that were non-cytotoxic to the normal mammary cell line MCF-10A. Furthermore, DMF inhibited NF-κB nuclear translocation and Survivin, XIAP, Bcl-xL, and Bcl-2 expression in MDA-MB-231 and BT-549 cells. Moreover, DMF enhanced the apoptosis-inducing effect of paclitaxel and adriamycin in MDA-MB-231 cells. These findings suggest that DMF may be an effective therapeutic agent for the treatment of TNBC, in which NF-κB is constitutively active. DMF may also be useful as an adjuvant therapy to conventional anticancer drugs.
Keywords: NF-κB; adriamycin; dimethyl fumarate; paclitaxel; triple-negative breast cancer.