In this work, we report performance optimization of a wireless sensor network (WSN) based on the plain silver surface plasmon resonance imaging (SPRi) sensor. At the sensor node level, we established the refractive index-thickness models for both gold and silver in the sensor and calculated the depth-width ratio (DWR) and penetration depth (PD) values of the sensor of different gold and silver thicknesses by the Jones transfer matrix and Kriging interpolation. We optimized the DWR and PD simultaneously by using the multi-objective optimization genetic algorithm (MOGA). In the following performance optimization of WSN, we simultaneously optimized the transmission success rate and information dimension with the number of nodes and transmission failure rate of the sensor node as variables by the same algorithm. By calculating the information dimension and the transmission success rate of each Pareto optimal solution, we obtained the number of nodes and transmission failure probability of the node available for practical deployment of WSN. The above results indicate that the Pareto optimal solution set obtained from MOGA can help to provide the best solution for the optimization of some certain performance parameters and also assist us in making the trade-off decision in the structure design and network deployment if optimal values of all the performance parameters can be obtained simultaneously.
Copyright © 2022 Zhiyou Wang et al.