In this study, co-assembled protein-polysaccharide complexes (ZCs) were prepared by fixing zein nanoparticles at the fibrillar carboxymethyl cellulose (CMC) by pH-driven anti-solvent precipitation. The complexation boosted the dispersity of zein from 17.3% to 88.6%. Scanning electron microscopy and atomic force microscopy confirmed the formation of network structures where the fibrous polysaccharides inserted into the interval of granular proteins. Circular dichroism spectrum, fluorescence spectrum, and X-ray diffraction verified the electrostatic interaction pattern between zein and CMC. Besides, the ZCs presented favorable amphiphilic properties, and the electrostatic interaction between zein and CMC can be fine-tuned by the substitution degree (DS) of carboxymethyl in CMC. Therefore, the Pickering emulsions stabilized by ZCs had controllable size and long-term stability using DS as a stimulus. Our study offers a novel strategy developing bio-based materials as novel stabilizers of Pickering emulsions.
Keywords: Carboxymethyl cellulose; Electrostatic interactions; Pickering emulsions; Substitution degree; Zein.
Copyright © 2022 Elsevier Ltd. All rights reserved.