Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications

Small. 2022 Sep;18(37):e2203400. doi: 10.1002/smll.202203400. Epub 2022 Aug 15.

Abstract

The field of nanozymes has developed rapidly over the past decade. Among various oxidoreductases mimics, catalase (CAT)-like nanozyme, acting as an essential part of the regulation of reactive oxygen species (ROS), has attracted extensive research interest in recent years. However, CAT-like nanozymes are not as well discussed as other nanozymes such as peroxidase (POD)-like nanozymes, etc. Compared with natural catalase or artificial CAT enzymes, CAT-like nanozymes have unique properties of low cost, size-dependent properties, high catalytic activity and stability, and easy surface modification, etc., which make them widely used in various fields, especially in tumor therapy and disease treatment. Consequently, there is a great requirement to make a systematic discussion on CAT-like nanozymes. In this review, some key aspects of CAT-like nanozymes are deeply summarized as: 1) Typical CAT-like nanozymes classified by different nanomaterials; 2) The catalytic mechanisms proposed by experimental and theoretical studies; 3) Extensive applications in regard to tumor therapy, cytoprotection and sensing. Therefore, it is prospected that this review will contribute to the further design of CAT-like nanozymes and optimize their applications with much higher efficiency than before.

Keywords: cancer therapy; catalase CAT-like nanozymes; catalytic mechanisms; classifications.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalase
  • Catalysis
  • Humans
  • Nanostructures*
  • Neoplasms*
  • Peroxidase

Substances

  • Catalase
  • Peroxidase