Arginine deiminase (ADI), a promising anticancer enzyme from Mycoplasma hominis, is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, Pseudomonas furukawaii 24 was identified as a potent producer of ADI with optimum activity under physiological conditions. In the present study, phylogenetic analysis of microbial ADIs indicated P. furukawaii ADI (PfADI) to be closely related to experimentally characterized ADIs of Pseudomonas sp. with proven anticancer activity. Immunoinformatics analysis was performed indicating lower immunogenicity of PfADI than MhADI (M. hominis ADI) both in terms of number of linear and conformational B-cell epitopes and T-cell epitope density. Overall antigenicity and allergenicity of PfADI was also lower as compared to MhADI, suggesting the applicability of PfADI as an alternative anticancer biotherapeutic. Hence, in vitro experiments were performed in which the ADI coding arcA gene of P. furukawaii was cloned and expressed in E. coli BL21. Recombinant ADI of P. furukawaii was purified, characterized and its anticancer activity was assessed. The enzyme was stable at human physiological conditions (pH 7 and 37 °C) with Km of 1.90 mM. PfADI was found to effectively inhibit the HepG2 cells with an IC50 value of 0.1950 IU/ml. Therefore, the current in silico and in vitro studies establish PfADI as a potential anticancer drug candidate with improved efficacy and low immunogenicity.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-022-03292-2.
Keywords: Anticancer; Arginine deiminase; In silico analysis; Mycoplasma hominis; Pseudomonas furukawaii.
© King Abdulaziz City for Science and Technology 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.