Aphis craccivora (Koch), a globally pest that causes significant threat to the legumes, has developed different degrees of resistance to a variety of insecticides. The ATP-binding cassette (ABC) transporters comprise a multifunctional transporter protein superfamily which play important roles in the transport and detoxification of xenobiotic compounds in insects. However, whether ABC transporters take part in the tolerance of imidacloprid in A. craccivora is still unknown. In order to investigate the functions of ABC transporters in the imidacloprid tolerance, fifty- eight ABC transporters were identified in the transcriptome and genome of A. craccivora and the toxicity of imidacloprid against A. craccivora was significantly increased after application the inhibitors of verapamil and Ko143. The relative expression levels of ABCG5, ABCG6, ABCG10, ABCH3, ABCH4, ABCH8 and ABCH10 were significantly up-regulated in response to imidacloprid treatment with LC15, LC50 and LC85 concentrations, and the expression patterns of these seven ABC transporters were further analyzed at different developmental stages and in different tissues of A. craccivora by quantitative real-time PCR (RT-qPCR). Furthermore, knockdown of ABCG10, ABCH3 and ABCH4 significantly increased the mortality of A. craccivora to imidacloprid. Our results reveal the key functions of ABC transporters in the tolerance of imidacloprid and provide valuable information regarding the development of improved management strategies in A. craccivora.
Keywords: ABC transporters; Aphis craccivora; Imidacloprid; RNA interference; Tolerance.
Copyright © 2022 Elsevier Inc. All rights reserved.