Carbon source availability drives nutrient utilization in CD8+ T cells

Cell Metab. 2022 Sep 6;34(9):1298-1311.e6. doi: 10.1016/j.cmet.2022.07.012. Epub 2022 Aug 17.

Abstract

How environmental nutrient availability impacts T cell metabolism and function remains poorly understood. Here, we report that the presence of physiologic carbon sources (PCSs) in cell culture medium broadly impacts glucose utilization by CD8+ T cells, independent of transcriptional changes in metabolic reprogramming. The presence of PCSs reduced glucose contribution to the TCA cycle and increased effector function of CD8+ T cells, with lactate directly fueling the TCA cycle. In fact, CD8+ T cells responding to Listeria infection preferentially consumed lactate over glucose as a TCA cycle substrate in vitro, with lactate enhancing T cell bioenergetic and biosynthetic capacity. Inhibiting lactate-dependent metabolism in CD8+ T cells by silencing lactate dehydrogenase A (Ldha) impaired both T cell metabolic homeostasis and proliferative expansion in vivo. Together, our data indicate that carbon source availability shapes T cell glucose metabolism and identifies lactate as a bioenergetic and biosynthetic fuel for CD8+ effector T cells.

Keywords: (13)C tracing; T cells; TCA cycle; immunometabolism; lactate; metabolic programming; metabolomics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD8-Positive T-Lymphocytes* / metabolism
  • Carbon* / metabolism
  • Glucose / metabolism
  • Lactic Acid / metabolism
  • Nutrients

Substances

  • Lactic Acid
  • Carbon
  • Glucose