To act proactively, we must predict when future events will occur. Individuals generate temporal predictions using cues that indicate an event will happen after a certain duration elapses. Neural models of timing focus on how the brain represents these cue-duration associations. However, these models often overlook the fact that situational factors frequently modulate temporal expectations. For example, in realistic environments, the intervals associated with different cues will often covary due to a common underlying cause. According to the 'common cause hypothesis,' observers anticipate this covariance such that, when one cue's interval changes, temporal expectations for other cues shift in the same direction. Furthermore, as conditions will often differ across environments, the same cue can mean different things in different contexts. Therefore, updates to temporal expectations should be context-specific. Behavioral work supports these predictions, yet their underlying neural mechanisms are unclear. Here, we asked whether the dorsal hippocampus mediates context-based timing, given its broad role in context-conditioning. Specifically, we trained rats with either hippocampal or sham lesions that two cues predicted reward after either a short or long duration elapsed (e.g., tone-8 s/light-16 s). Then, we moved rats to a new context and extended the long cue's interval (e.g., light-32 s). This caused rats to respond later to the short cue, despite never being trained to do so. Importantly, when returned to the initial training context, sham rats shifted back toward both cues' original intervals. In contrast, lesion rats continued to respond at the long cue's newer interval. Surprisingly, they still showed contextual modulation for the short cue, responding earlier like shams. These data suggest the hippocampus only mediates context-based timing if a cue is explicitly paired and/or rewarded across distinct contexts. Furthermore, as lesions did not impact timing measures at baseline or acquisition for the long cue's new interval, our data suggests that the hippocampus only modulates timing when context is relevant.
Keywords: Causal inference; Common cause; Context; Hippocampus; Time perception; Timing.
Copyright © 2022 Elsevier Inc. All rights reserved.