Purified recombinant rutinosidase from Aspergillus oryzae expressed in Pichia pastoris (rAoRutM) exhibits increase in thermal stability after treatment with endo-β-N-acetylglucosaminidase H (endo-H). In this study, the role of N-glycosylation in the activity and thermal stability of rAoRutM was analyzed via site-directed mutagenesis. Based on the crystal structure of AoRutM, five N-glycosylation sites (N32, N128, N176, N288, and N359) were identified in the AoRut protein. Among five single variants constructed for these sites, the N128D, N176D, and N359D variants exhibited similar mobility bands compared to that of the wild-type enzyme based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas the N32D and N288D variants exhibited slightly and considerably increasing mobility bands, respectively. The N128D and N288D variants showed increasing and decreasing rutinosidase activity, respectively, compared to the case for the wild-type, without and with endo-H treatments. While the N128D and N176D variants had lower Km values, the N288D and N359D variants had higher Km values, compared to the wild-type, without and with endo-H treatments. Surprisingly, the N32D and N176D variants exhibited considerably greater thermal stability than the wild-type, without or with the endo-H treatments, whereas the N128D and N359D variants exhibited drastically decreased thermal stability. Circular dichroism (CD) spectra of the N128D and N359D variants showed a similar CD profile to that of the wild-type treated with endo-H; however, the molar ellipticity values of the peaks at 208 nm and 212 nm in the above variants varied from those of the intact wild-type and other variants.
Keywords: Aspergillus oryzae; Mutational analysis; N-glycosylation; Rutinosidase; Thermal stability.
Copyright © 2022 Elsevier Inc. All rights reserved.