Recently, N6-methylation (m6A) has recently become a hot topic due to its key role in disease pathogenesis. Identifying disease-related m6A sites aids in the understanding of the molecular mechanisms and biosynthetic pathways underlying m6A-mediated diseases. Existing methods treat it primarily as a binary classification issue, focusing solely on whether an m6A-disease association exists or not. Although they achieved good results, they all shared one common flaw: they ignored the post-transcriptional regulation events during disease pathogenesis, which makes biological interpretation unsatisfactory. Thus, accurate and explainable computational models are required to unveil the post-transcriptional regulation mechanisms of disease pathogenesis mediated by m6A modification, rather than simply inferring whether the m6A sites cause disease or not. Emerging laboratory experiments have revealed the interactions between m6A and other post-transcriptional regulation events, such as circular RNA (circRNA) targeting, microRNA (miRNA) targeting, RNA-binding protein binding and alternative splicing events, etc., present a diverse landscape during tumorigenesis. Based on these findings, we proposed a low-rank tensor completion-based method to infer disease-related m6A sites from a biological standpoint, which can further aid in specifying the post-transcriptional machinery of disease pathogenesis. It is so exciting that our biological analysis results show that Coronavirus disease 2019 may play a role in an m6A- and miRNA-dependent manner in inducing non-small cell lung cancer.
Keywords: Laplacian smoothing regularization term; Tucker decomposition; disease pathogenesis; m6A–event–disease association; multi-view learning; post-transcriptional events.
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].