Microgels adsorb to air/water and oil/water interfaces - a process driven by a significant reduction in interfacial tension. Depending on the available interface area per microgel, strong lateral deformation can be observed. Typically, hexagonally ordered structures appear spontaneously upon contact of the microgel shells. Transfer from the interface to solid substrates gives access to macroscopically sized microgel monolayers that are interesting for photonic and plasmonic studies as well as colloid-based lithography, for example. Significant efforts have been made to understand the phase behavior of microgels at different interfaces and to explore the available parameter space for achieving complex tessellations. In this review, we will discuss the most recent developments in the realization of microgel monolayers with structures beyond hexagonal packing.