Early life stress is commonly experienced by infants, especially preterm infants, and may impact their neurodevelopmental outcomes in their early and later lives. Mitochondrial function/dysfunction may play an important role underlying the linkage of prenatal and postnatal stress and neurodevelopmental outcomes in infants. This review aimed to provide insights on the relationship between early life stress and neurodevelopment and the mechanisms of mitochondrial function/dysfunction that contribute to the neuropathology of stress. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used to develop this systematic review. PubMed, Scopus, PsycINFO, and Biosis databases were searched for primary research articles published between 2010 and 2021 that examined the relationships among mitochondrial function/dysfunction, infant stress, and neurodevelopment. Thirty studies were identified. There is evidence to support that mitochondrial function/dysfunction mediates the relationship between prenatal and postnatal stress and neurodevelopmental outcomes in infants. Maternal transgenerational transmission of mitochondrial bioenergetic patterns influenced prenatal stress induced neurodevelopmental outcomes and behavioral changes in infants. Multiple functionally relevant mitochondrial proteins, genes, and polymorphisms were associated with stress exposure. This is the first review of the role that mitochondrial function/dysfunction plays in the association between stress and neurodevelopmental outcomes in full-term and preterm infants. Although multiple limitations were found based on the lack of data on the influence of biological sex, and due to invasive sampling, and lack of longitudinal data, many genes and proteins associated with mitochondrial function/dysfunction were found to influence neurodevelopmental outcomes in the early life of infants.
Keywords: Infant; Mitochondrial function/dysfunction; Neurodevelopmental outcomes; Stress.
© 2022 S. Karger AG, Basel.